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Algorithms for SDP

• Interior-Point Methods
(Existence of) Central-Path (CP), Newton’s Method to follow
CP, practical limitations and existing software

• Interior-Points and Cutting Planes
How to deal with (too many) combinatorial cutting planes,
Lagrangian Dual, Bundle methods combined with SDP ?

• Projection Methods
How to deal with (too many) primal equations if matrix
dimension n is not too big ?

• Spectral Bundle Method
How to deal with (too many) primal constraints if n gets
bigger?
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Strong duality (from before)

Strong duality (primal=dual and optima are attained) holds
if we assume that both the primal and the dual problem
have strictly feasible points (X,Z ≻ 0).
Then it follows from the general Karush-Kuhn-Tucker theory
that (X, y, Z) is optimal if and only if

A(X) = b, X � 0, AT (y)− Z = C, Z � 0, ZX = 0.

Now too many equations as ZX need not be symmetric.
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Central Path

For this part we assume:

(A) ∃ primal and dual feasible points X,Z ≻ 0.

Consider, for µ > 0 the system:

(CP ) A(X) = b, Z = AT y − C, ZX = µI

over X,Z � 0.
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Central Path

For this part we assume:

(A) ∃ primal and dual feasible points X,Z ≻ 0.

Consider, for µ > 0 the system:

(CP ) A(X) = b, Z = AT y − C, ZX = µI

over X,Z � 0.
Fundamental Theorem for Interior-Point methods (see SDP
Handbook, Chapter 10):

(CP ) has unique solution ∀µ > 0 ⇐⇒ (A) holds.

By inverse function theorem, this solution (X(µ)), y(µ), Z(µ))
forms smooth curve, called Central Path.
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Central Path Equations (2)

The system defining (CP) is overdetermined. Several ways
to fix this:
Replace ZX − µI = 0 by

1. Z − µX−1 = 0

2. X − µZ−1 = 0

3. ZX + XZ − 2µI = 0

4. P (.)P−1 + (P (.)P−1)T Monteiro-Zhang family

These lead to different linearizations.
Path following methods: Follow the central path by finding
points (close to it) for a decreasing sequence of µ.
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Interior-Point Methods to solve SDP (1)

Primal-Dual Path-following Methods:

maintain X,Z � 0 and try to reach feasibility and optimality.
Use Newton’s method applied to perturbed problem
ZX = µI or variant from before, and iterate for µ→ 0.
At start of iteration: (X ≻ 0, y, Z ≻ 0)
Linearized system (CP) to be solved for (∆X, ∆y, ∆Z):

A(∆X) = rP := b− A(X) primal residue

AT (∆y)−∆Z = rD := Z + C − AT (y) dual residue

Z∆X + ∆ZX = µI − ZX path residue

The last equation can be reformulated in many ways, which
all are derived from the complementarity condition ZX = 0
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Interior-Point Methods to solve SDP (2)

Direct approach with partial elimination:
Using the second and third equation to eliminate ∆X and
∆Z, and substituting into the first gives

∆Z = AT (∆y)− rD, ∆X = µZ−1 −X − Z−1∆ZX,

and the final system to be solved:

A(Z−1AT (∆y)X) = µA(Z−1)− b + A(Z−1rDX)

Note that
A(Z−1AT (∆y)X) = M∆y,

but the m×m matrix M may be expensive to form.
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Computational effort

• explicitely determine Z−1 O(n3)

• several matrix multiplications O(n3)

• final system of order m to compute ∆y O(m3)

• forming the final system matrix O(mn3 + m2n2)

• line search to determine

X+ := X + t∆X,Z+ := Z + t∆Z is at least O(n3)

Effort to form system matrix depends on structure of A(.)
Limitations: n ≈ 1000, m ≈ 5000. See Mittelmann’s site:
http://plato.asu.edu/ftp/sdplib.html
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Basic SDP Relaxation of Max-Cut

We solve max〈L,X〉 : diag(X) = e, X � 0.
Matrices of order n, and n simple equations xii = 1
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Basic SDP Relaxation of Max-Cut

We solve max〈L,X〉 : diag(X) = e, X � 0.
Matrices of order n, and n simple equations xii = 1

n seconds
200 2
400 7
600 16
800 35

1000 80
1500 260
2000 500

Seconds on a PC (Pentium 4, 2.1 Ghz). Implementation in
MATLAB, 30 lines of source code
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Example: Lovasz Theta Function

Given a graph G = (V,E) with |V | = n, |E| = m.

ϑ(G) = max{〈J,X〉 : tr(X) = 1, xij = 0 ∀(ij) ∈ E, X � 0}

The number of constraints depends on the edge set E.

n 100 200 300 400
|E| 487 2047 4531 7949

time 1 30 309 1583
|E| 1240 5099

time 7 371
|E| 2531 10026

time 34 2735

Further details: Dukanovic, Rendl: Math. Prog. 109 (2007)
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Timings: Random SDP

Each Ai is nonzero only on randomly chosen 4 × 4
submatrix, main diagonal is 0.
SEDUMI seconds with default setting.

n m secs.
100 1000 11
100 2000 159
200 2000 151
200 5000 2607
300 5000 2395

No attempt with larger m. Memory (!!) and time (!!)

For more results, see Mittelmann’s site:
http://plato.asu.edu/ftp/sdplib.html
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What if m is too large?

We consider

max〈C,X〉 such that A(X) = b, X � 0,

where b ∈ IRm and m is too large, for instance m > 10, 000.

Two ideas:
• Suppose we can split the constraints into two parts so that
including only one part makes SDP easy→ work on partial
Lagrangian dual

• Use projection methods
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Partial Lagrangian

Now we consider

z∗ := max〈C,X〉 such that A(X) = a, B(X) = b, X � 0.

The idea: Optimizing over A(X) = a without B(X) = b is
’easy’, but inclusion of B(X) = b makes SDP difficult.
(Could also have inequalities B(X) ≤ b.)
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Partial Lagrangian

Now we consider

z∗ := max〈C,X〉 such that A(X) = a, B(X) = b, X � 0.

The idea: Optimizing over A(X) = a without B(X) = b is
’easy’, but inclusion of B(X) = b makes SDP difficult.
(Could also have inequalities B(X) ≤ b.)
Partial Lagrangian Dual (y dual to b):

L(X, y) := 〈C,X〉+ yT (b−B(X))

Dual functional: (F = {X : A(X) = a, X � 0}):

f(y) := max
X∈F

L(X, y) = bT y + max
x∈F
〈C −BT (y), X〉
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Properties of f (y)

Recall: f(y) = bT y + maxx∈F 〈C −BT (y), X〉
f is convex (max of linear functions)
weak duality: z∗ ≤ f(y) ∀y (holds by construction)
strong duality: z∗ = miny f(y) (holds under Slater condition)
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Properties of f (y)

Recall: f(y) = bT y + maxx∈F 〈C −BT (y), X〉
f is convex (max of linear functions)
weak duality: z∗ ≤ f(y) ∀y (holds by construction)
strong duality: z∗ = miny f(y) (holds under Slater condition)

Basic assumption: We can compute f(y) easily, yielding
also maximizer X∗ and g∗ := b−B(X∗).
f(y) = bT y + 〈C −BT (y), X∗〉 = yT g∗ + 〈C,X∗〉, so

f(v) ≥ vT g∗ + 〈C,X∗〉,

therefore, using 〈C,X∗〉 = f(y)− yT g∗ we get

f(v) ≥ f(y) + 〈g∗, v − y〉

(This means g∗ is subgradient of f at y.)
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Minimize f (y) using convex optimization

z∗ = min
y

f(y) ≤ f(y) ∀y.

Any y provides upper bound on z∗ by weak duality, and we
can try to find best upper bound by minimizing the convex
but nonsmooth function f(y).

Use simple subgradient or more refined bundle methods to
get approximate minimizer.

See Lemarechal, Kiwiel 1970s, Zowe, Shor, Nesterov 1980’
for the general approach.

See Fischer, Gruber, R. and Sotirov Math Prog 105 (2006)
for applications to Max-Cut
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Computations: SDP + triangles

Big graphs (from Helmberg). Use the bundle method to deal
with triangle inequalities. The number of function
evaluations of f is 50 for n = 800, and 30 for n = 2000.

name n cut initial gap (%) final (%) minutes

G6 800 2172 22.29 18.15 43.11

G11 800 564 11.56 1.54 60.20

G14 800 3054 4.51 2.84 59.68

G18 800 985 18.38 7.96 69.19

G22 2000 13293 6.34 5.66 278.06

G27 2000 3293 25.77 22.94 406.66

G39 2000 2373 21.27 12.63 533.36

F. Rendl, Bertinoro, May 2008 – p.20/50



Projection methods (for large m)

• Boundary Point method (based on augmented
Lagrangian), see Povh, R., Wiegele, Computing (2007)

• Augmented Primal-Dual Method (based on alternate
projections), see Jarre, R. SIOPT (to appear)

(D) min
y

bT y s.t. AT (y)− C = Z � 0.

Lagrangian:

max
X

min
y,Z�0

bT y + 〈X,Z + C − AT (y)〉.
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Augmented Lagrangian

Augmented Lagrangian applied to (D)
X . . . Lagrange Multiplier for dual equations
σ > 0 penalty parameter

Lσ(y, Z,X) = bT y + 〈X,Z + C −AT (y)〉+
σ

2
‖Z + C −AT (y)‖2

Generic Method:
repeat until convergence

(a) Keep X fixed: solve miny,Z�0 Lσ(y, Z,X) to get y, Z � 0

(b) update X: X ← X + σ(Z + C − AT (y))
(c) update σ

Original version: Powell, Hestenes (1969)
σ carefully selected gives linear convergence
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Inner Subproblem

Inner minimization:
X and σ are fixed.

W (y) := AT (y)− C −
1

σ
X

Lσ = bT y + 〈X,Z + C − AT (y)〉+
σ

2
‖Z + C − AT (y)‖2 =

= bT y +
σ

2
‖Z −W (y)‖2 + const = f(y, Z) + const.

Note that dependence on Z looks like projection problem,
but with additional variables y.
Alltogether this is convex quadratic SDP!
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Optimality conditions (1)

Introduce Lagrange multiplier V � 0 for Z � 0:

L(y, Z, V ) = f(y, Z)− 〈V, Z〉

Recall:

f(y, Z) = bT y +
σ

2
‖Z −W (y)‖2, W (y) = AT (y)− C −

1

σ
X.

∇yL = 0 gives σAAT (y) = σA(Z + C) + A(X)− b,

∇ZL = 0 gives V = σ(Z −W (y)),

V � 0, Z =� 0, V Z = 0.

Since Slater constraint qualification holds, these are
necessary and sufficient for optimality.
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Optimality conditions (2)

Note also: For y fixed we get Z by projection: Z = W (y)+.
From matrix analysis:

W = W+ + W−, W+ � 0, −W− � 0, 〈W+,W−〉 = 0.

We have: (y, Z, V ) is optimal if and only if:

AAT (y) =
1

σ
(A(X)− b) + A(Z + C),

Z = W (y)+, V = σ(Z −W (y)) = −σW (y)−.

Solve linear system (of order m) to get y.
Compute eigenvalue decomposition of W (y) (order n).
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Coordinatewise Minimization

If Z (and X) is kept constant, y given by unconstrained
quadratic minimization:

σAAT y = σA(C + Z) + A(X)− b

If y (and X) is kept constant, Z is given by projection onto
PSD:

min
Z�0
‖Z −W (y)‖2

Solved by eigenvalue decomposition of W (y). Optimal Z

given by Z = W (y)+.
see also Burer and Vandenbussche (2004) for a similar
approach applied to primal SDP
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Why boundary-point method?

Observe that the update on X is given by

X ← X + σ(Z + C − AT (y)) =

(X+σC−σAT (y))+σZ = −σW (y)+σW (y)+ = −σW (y)− � 0

We have
Z = W (y)+, X = −σW (y)−

therefore X and Z are always in PSD and

ZX = 0.

Maintain complementarity and semidefiniteness. Once we
reach primal and dual feasibility, we are optimal.

F. Rendl, Bertinoro, May 2008 – p.27/50



Inner stopping condition

Inner optimality conditions:

AAT (y) =
1

σ
(A(X)− b) + A(Z + C),

Z = W (y)+, V = σ(Z −W (y)) = −σW (y)−.

Equations defining Z and V hold for current y. So error
occurs only in first equation.
A(V ) = A(σ(Z + C − AT (y)) + X), so
b− A(V ) = σAAT (y)− σA(Z + C + 1

σX) + b.

‖AAT (y)−
1

σ
(A(X)− b)− A(Z + C)‖ =

1

σ
‖A(V )− b‖.

Inner error is primal infeasibility of V .
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Boundary Point Method

Start: σ > 0, X � 0, Z � 0

repeat until ‖Z − AT (y) + C‖ ≤ ǫ:
• repeat until ‖A(V )− b‖ ≤ σǫ (X, σ fixed):

- Solve for y: AAT (y) = rhs

- Compute Z = W (y)+, V = −σW (y)−
• Update X : X = −σW (y)−

Note: Outer stopping condition is dual feasibility.

See Povh, R., Wiegele, Computing (2006), and Malick,
Povh, R., Wiegele (working paper, Klagenfurt 2008)
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Theta Number revisited

Comparing Boundary point method (bpm) (Povh, R.,
Wiegele (2006)) to Kocvara and Stingl’s KS iterative SDP
solver (2006). Timings of KS from their paper, their machine
is at least twice as fast as ours, 5 digits accuracy. Random
graphs from the Kim Toh collection.

graph n |E| KS (secs) bpm
theta82 400 23871 695 87
theta83 400 39861 852 70

theta102 500 37466 1231 143
theta103 500 62515 1960 110
theta104 500 87244 2105 124
theta123 600 90019 2819 205
theta162 800 127599 6004 570
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Theta: big DIMACS graphs

graph n m ϑ ω

keller5 776 74.710 31.00 27
keller6 3361 1026.582 63.00 ≥59
san1000 1000 249.000 15.00 15
san400-07.3 400 23.940 22.00 22
brock400-1 400 20.077 39.70 27
brock800-1 800 112.095 42.22 23
p-hat500-1 500 93.181 13.07 9
p-hat1000-3 1000 127.754 84.80 ≥68
p-hat1500-3 1500 227.006 115.44 ≥94

see Malick, Povh, R., Wiegele (2008): The theta number for
the bigger instances has not been computed before.
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Comparing IP and projection methods

constraint IP BPM APD
A(X) = b yes *** yes

X � 0 yes yes ***
AT (y)− C = Z yes *** yes

Z � 0 yes yes ***
〈Z,X〉 = 0 — — yes

ZX = 0 *** yes —

IP: Interior-point approach
BPM: boundary point method
APD: augmented primal-dual method
***: means that once this condition is satisfied, the method
stops.
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Augmented Primal-Dual Method

(This is joint work with Florian Jarre.)

FP := {X : A(X) = b} primal linear space,

FD := {(y, Z) : Z = C + AT (y)} dual linear space

OPT := {(X, y, Z); 〈C,X〉 = bT y} optimality hyperplane.

From Linear Algebra:

ΠFP (X) = X − AT
(

(AAT )−1(A(X)− b)
)

,

ΠFD(Z) = C + AT
(

(AAT )−1(A(Z − C))
)

are the projections of (X,Z) onto FP and FD.
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Augmented Primal-Dual Method (2)

Note that both projections essentially need one solve with
matrix AAT . (Needs to be factored only once.)
Projection onto OPT is trivial.
Let K = FP ∩ FD ∩OPT . Given (X, y, Z), the projection
ΠK(X, y, Z) onto K requires two solves.

This suggests the following iteration:

Start: Select (X, y, Z) ∈ K

Iteration: while not optimal
• X+ = ΠSDP (X), Z+ = ΠSDP (Z).

• (X, y, Z)← ΠK(X+, y, Z+)

The projection ΠSDP (X) of X onto SDP can be computed
through an eigenvalue decomposition of X.
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Augmented Primal-Dual Method (3)

This approach converges, but possibly very slowly.
The computational effort is two solves (order m) and two
factorizations (order n).

An improvement: Consider

φ(X,Z) := dist(X,SDP )2 + dist(Z, SDP )2.

Here dist(X,SDP ) denotes the distance of the matrix X

from the cone of semidefinite matrices. The (convex)
function φ is differentiable with Lipschitz-continuous
gradient:

∇φ(X,Z) = (X,Z)− ΠK(ΠSDP (X,Z))

We solve SDP by minimizing φ over K.
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Augmented Primal-Dual Method (4)

Practical implementation currently under investigation.
The function φ could be modified by

φ(X,Z) + ‖XZ‖2F

Apply some sort of conjugate gradient approach
(Polak-Ribiere) to minimize this function. Computational
work:

• Projection onto K done by solving a system with matrix AAT .

• Evaluating φ involves spectral decomposition of X,Z.

This approach is feasible if n not too large (n ≤ 1000), and if
linear system with AAT can be solved.

F. Rendl, Bertinoro, May 2008 – p.36/50



Augmented Primal-Dual Method (5)

Recall: (X, y, Z) is optimal once X,Z � 0.
A typical run: n = 400, m = 10000.

iter secs 〈C,X〉 λmin(X) λmin(Z)

1 9.7 11953.300 -0.00209 -0.00727
10 55.8 11942.955 -0.00036 -0.00055
20 103.8 11948.394 -0.00013 -0.00015
30 150.7 11950.799 -0.00007 -0.00005
40 196.7 11951.676 -0.00005 -0.00002
50 242.6 11951.781 -0.00004 -0.00001

The optimal value is 11951.726.
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Random SDP

n m opt apd λmin

400 40000 -114933.8 -114931.1 -0.0002
500 50000 -47361.2 -47353.4 -0.0003
600 60000 489181.8 489194.5 -0.0004
700 70000 -364458.8 -364476.1 -0.0004
800 80000 -112872.6 -112817.4 -0.0011

1000 100000 191886.2 191954.5 -0.0012

50 iterations of APD.
Largest instance takes about 45 minutes.
λmin is most negative eigenvalue of X and Z.
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Large-Scale SDP

Projection methods like the boundary point method assume
that a full spectral decomposition is computationally
feasible.
This limits n to n ≤ 2000 but m could be arbitrary.

What if n is much larger?
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Spectral Bundle Method

What if m and n is large?
In addition to before, we now assume that working with
symmetric matrices X of order n is too expensive (no
Cholesky, no matrix multiplication!)
One possibility: Get rid of Z � 0 by using eigenvalue
arguments.
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Constant trace SDP

A has constant trace property if I is in the range of AT ,
equivalently

∃η such that AT (η) = I

The constant trace property implies:

A(X) = b, AT (η) = I then

tr(X) = 〈I,X〉 = 〈η,A(X)〉 = ηT b =: a

Constant trace property holds for many combinatorially
derived SDP!
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Reformulating Constant Trace SDP

Reformulate dual as follows:

min{bT y : AT (y)− C = Z � 0}

Adding (redundant) primal constraint tr(X) = a introduces
new dual variable, say λ, and dual becomes:

min{bT y + aλ : AT (y)− C + λI = Z � 0}

At optimality, Z is singular, hence λmin(Z) = 0.
Will be used to compute dual variable λ explicitely.
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Dual SDP as eigenvalue optimization

Compute dual variable λ explicitely:

λmax(−Z) = λmax(C−AT (y))−λ = 0,⇒ λ = λmax(C−AT (y))

Dual equivalent to

min{a λmax(C − AT (y)) + bT y : y ∈ ℜm}

This is non-smooth unconstrained convex problem in y.
Minimizing f(y) = λmax(C − AT (y)) + bT y:
Note: Evaluating f(y) at y amounts to computing largest
eigenvalue of C − AT (y).
Can be done by iterative methods for very large (sparse)
matrices.
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Spectral Bundle Method (1)

If we have some y, how do we move to a better point?

λmax(X) = max{〈X,W 〉 : tr(W ) = 1, W � 0}

Define
L(W, y) := 〈C − AT (y),W 〉+ bT y.

Then f(y) = max{L(W, y) : tr(W ) = 1, W � 0}.
Idea 1: Minorant for f(y)
Fix some m× k matrix P . k ≥ 1 can be chosen arbitrarily.
The choice of P will be explained later.
Consider W of the form W = PV P T with new k × k matrix
variable V .

f̂(y) := max{L(W, y) : W = PV P T , V � 0} ≤ f(y)
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Spectral Bundle Method (2)

Idea 2: Proximal point approach

The function f̂ depends on P and will be a good
approximation to f(y) only in some neighbourhood of the
current iterate ŷ.
Instead of minimizing f(y) we minimize

f̂(y) +
u

2
‖y − ŷ‖2.

This is a strictly convex function, if u > 0 is fixed.
Substitution of definition of ŷ gives the following min-max
problem
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Quadratic Subproblem (1)

min
y

max
W

L(W, y) +
u

2
‖y − ŷ‖2 = . . .

= max
W, y=ŷ+ 1

u
(A(W )−b)

L(W, y) +
u

2
‖y − ŷ‖2

= max
W
〈C − AT (ŷ),W 〉+ bT ŷ −

1

2u
〈A(W )− b, A(W )− b〉.

Note that this is a quadratic SDP in the k × k matrix V ,
because W = PV P T .
k is user defined and can be small, independent of n!!
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Quadratic Subproblem (2)

Once V is computed, we get with W = PV P T that
y = ŷ + 1

u(A(W )− b)

see: Helmberg, Rendl: SIOPT 10, (2000), 673ff

Update of P :
Having new point y, we evaluate f at y (sparse eigenvalue
computation), which produces also an eigenvector v to
λmax.
The vector v is added as new column to P , and P is purged
by removing unnecessary other columns.
Convergence is slow, once close to optimum

• solve quadratic SDP of size k

• compute λmax of matrix of order n
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Large-Scale Max-Cut SDP

We consider again

max〈L,X〉 s.t. diag(X) = e, X � 0.

Now n ≥ 10, 000.

•We compute upper bound on SDP relaxation for Max-Cut
using the spectral bundle method, and also apply the
Goemans-Williamson hyperplane rounding technique to
generate cuts.
• Sparse graphs with n up to 50,000.
• The graphs are generated as the union of k matchings.
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Large Max-Cut instances

n k upper bnd cut time (secs)
20,000 10 143.3 131.3 330
20,000 20 261.9 244.8 536
20,000 50 598.1 5711̇ 1255
30,000 10 214.9 197.2 753
30,000 20 393.3 367.4 990
30,000 50 897.9 857.3 2330
40,000 10 286.9 262.7 1180
40,000 20 524.6 489.8 1650
50,000 10 358.9 328.5 1800

About half the time is used to generate cuts, 50 iterations of
the spectral bundle method, values scaled (10−3).
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Last Slide

• Interior Point methods are fine and work robustly, but
n ≤ 1000 and m ≤ 10, 000 is a severe limit.
• If n small enough for matrix operations (n ≤ 2, 000), then
projection methods allow to go to large m. These algorithms
have weaker convergence properties and need some
nontrivial parameter tuning.
• Partial Lagrangian duality can always be used to deal with
only a part of the constraints explicitely. But we still need to
solve some basic SDP and convergence of bundle methods
for the Lagrangian dual may be slow.
• Currently, only spectral bundle is suitable as a general
tool for very-large scale SDP.
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