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Overview

Part 1:
How Semidefinite Problems arise as relaxations of
Combinatorial Optimization Problems

Part 2:
How SDP can be solved: from ’safe’ techniques
(Interior-Point Technology) to more advanced nonlinear
techniques, suitable also for large scale problems (but
with weaker convergence properties)
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Overview (Part 1)

Semidefinite Programming (SDP) Basics

Modeling with SDP
Graph Partition Problems
Stable Sets, Cliques
Coloring
Quadratic Assignment Problems

Tightening by Cutting Planes
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Semidefinite Programs

max{〈C,X〉 : A(X) = b,X � 0} = min{bT y : AT (y)−C = Z � 0}

This is a linear optimization problem over the cone of
semidefinite matrices. Such problems are called
semidefinite optimization problems (SDP).

Increased interest since early 1990’s, due to success of
interior-point methods.
SDP are convex optimization problems. SDP are powerful
tool in many areas of applied mathematics.
SDP-based models are often much stronger than purely
polyhedral relaxations.
General Reference: Handbook on SDP (Kluwer 2000), by
Wolkowicz et al.
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Semidefinite Programs (2)

Some notation and assumptions:

X,Z symmetric n × n matrices

The linear equations A(X) = b read 〈Ai, X〉 = bi for given
symmetric matrices Ai, i = 1, . . . ,m.
The adjoint map AT is given by AT (y) =

∑

yiAi.

It is defined through

〈y, A(X)〉 = 〈AT (y), X〉 ∀X, y.

How derive the dual ?
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SDP duality

Use Lagrange dual and Minimax Inequality to get Weak
duality :

sup
A(X)=b, X�0

〈C,X〉 = sup
X�0

inf
y

〈C,X〉 + yT (b − A(X))
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SDP duality

Use Lagrange dual and Minimax Inequality to get Weak
duality :

sup
A(X)=b, X�0

〈C,X〉 = sup
X�0

inf
y

〈C,X〉 + yT (b − A(X))

≤ inf
y

sup
X�0

bT y + 〈C − AT (y), X〉
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SDP duality

Use Lagrange dual and Minimax Inequality to get Weak
duality :

sup
A(X)=b, X�0

〈C,X〉 = sup
X�0

inf
y

〈C,X〉 + yT (b − A(X))

≤ inf
y

sup
X�0

bT y + 〈C − AT (y), X〉

= inf
y, AT (y)−C�0

bT y.

In general, sup and inf need not be attained, there can be
strict inequality after exchanging sup and inf and also a
finite (nonzero) duality gap between primal and dual value.
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Strong duality

Strong duality (primal=dual and optima are attained) holds
if we assume that both the primal and the dual problem
have strictly feasible points (X,Z ≻ 0).
Then it follows from the general Karush-Kuhn-Tucker theory
that (X, y, Z) is optimal if and only if

A(X) = b, X � 0, AT (y) − Z = C, Z � 0, 〈X,Z〉 = 0.

We have m +
(

n+1
2

)

+ 1 equations, and m + 2
(

n+1
2

)

variables.
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Strong duality

Strong duality (primal=dual and optima are attained) holds
if we assume that both the primal and the dual problem
have strictly feasible points (X,Z ≻ 0).
Then it follows from the general Karush-Kuhn-Tucker theory
that (X, y, Z) is optimal if and only if

A(X) = b, X � 0, AT (y) − Z = C, Z � 0, 〈X,Z〉 = 0.

We have m +
(

n+1
2

)

+ 1 equations, and m + 2
(

n+1
2

)

variables.
X, Z � 0 means X = UUT , Z = V V T , so we conclude that
0 = 〈X,Z〉 = ‖UT V ‖2 implies

ZX = UUT V V T = 0

Now too many equations as ZX need not be symmetric.
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Polyhedral versus Semidefinite approach

Polyhedral approach to IP:
• study convex hull of (characteristic vectors xF ) of feasible
solutions

conv{xF : F feasible}.

Semidefinite Programming (SDP) approach:
• Move from xF ∈ IRn to symmetric matrices xF xT

F and
study

conv{xF xT
F : F feasible}.

• Fact 1: Contained in the cone of semidefinite matrices.
• Fact 2: Anything quadratic in x will be linear in the matrix
space.
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The Max-Cut Problem

Unconstrained quadratic 1/-1 optimization:

max xT Lx such that x ∈ {−1, 1}n

This is Max-Cut as a binary quadratic problem. Graph
interpretation: G = (V,E) edge-weighted graph, with
weighted adjacency matrix A. Define Laplacian L = LA as
L = Diag(Ae) − A. S = {i : xi = 1}, T = {i : xi = −1} gives
bisection. Total weight of edges joining S and T is to be
maximized.
Same as unconstrained quadratic 0/1 minimization:

min xT Qx + cT x such that x ∈ {0, 1}n

Q upper triangular, or symmetric with zero diagonal.
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SDP relaxation for Max-Cut

Linearize (and simplify) to get tractable relaxation
xT Lx = 〈L, xxT 〉. New variable is X= xxT .
Basic SDP relaxation: (e . . . all-ones vector)

max{〈L,X〉 : diag(X) = e, X � 0}

This model goes back to Schrijver.
See also Poljak, R. (1995) primal-dual formulation, and
Goemans, Williamson (1995) for the hyperplane rounding
analysis.
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SDP relaxation for Max-Cut

Linearize (and simplify) to get tractable relaxation
xT Lx = 〈L, xxT 〉. New variable is X= xxT .
Basic SDP relaxation:

max{〈L,X〉 : diag(X) = e, X � 0}

This model goes back to Schrijver.
See also Poljak, R. (1995) primal-dual formulation, and
Goemans, Williamson (1995) for the hyperplane rounding
analysis.

0/1 version:
Relax X − xxT = 0, diag(X) = x by (convex) constraint:
X − xx � 0, diag(X) = x. Resulting SDP relaxation
equivalent to Max-Cut, see Helmberg (1997).
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Bisection and Equicut

In Max-Cut, the number of +1 in x is not constrained.

If |S|, |T | (cardinalities of partition blocks) are specified, this
can be modeled as a constraint on

∑

xi.

If
∑

i xi = 0 there are as many +1 as −1 in x. In terms of
partition, there is an equal number of nodes in each
bisection block.

Equicut:

min xT Lx such that x ∈ {−1, 1}n, eT x = 0.

This problem has been investigated by Kernighan, Lin 1972
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SDP relaxation of Equicut

eT x = 0 ⇐⇒ (eT x)2 = 0 ⇐⇒ 〈eeT , xxT 〉 = 0.

This translates into

〈J,X〉 = 0 with J = eeT .

SDP relaxation for Equicut:

min{〈L,X〉 : diag(X) = e, 〈J,X〉 = 0, X � 0}

Note that 〈J,X〉 = 0, X � 0 implies λmin(X) = 0, hence
there is no strictly feasible solution X to this SDP.
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k-equipartition

Partitioning the nodes of a graph into k > 2 sets of equal
cardinality can be modeled more easily with 0-1 variables.
X . . . n × k models incidence vectors of the partition blocks
1, . . . , k.

min{trXT LX : X partition matrix }

Linearization idea: XXT = Y � 0. The following conditions
must hold for Y , if n = km and we partition into k sets of
cardinality m:

diag(Y ) = e, Y e = me

This leads to SDP relaxation

min〈L, Y 〉 s.t. diag(Y ) = e, Y e = me, Y � 0.

Similar to Max-Cut but with eigenvector condition Y e = me.

F. Rendl, Bertinoro, May 2008 – p.17/31



Stable sets

e . . . all-ones vector, and J = eeT . . . all-ones matrix.

α(G) = max
∑

i

xi such that xixj = 0 ij ∈ E, xi ∈ {0, 1}

Linearization trick: Consider X = 1
xT x

xxT . X satisfies:
tr(X) = 1 and eT x = xT x, so eT x = 〈J,X〉. Hence,

α(G) = max〈J,X〉 such that xij = 0 ∀ij ∈ E,

X =
1

xT x
xxT , x ∈ {0, 1}n
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Stable sets

e . . . all-ones vector, and J = eeT . . . all-ones matrix.
Linearization trick: Consider X = 1

xT x
xxT . X satisfies:

tr(X) = 1 and eT x = xT x, so eT x = 〈J,X〉. Hence,

α(G) = max〈J,X〉 such that xij = 0 ∀ij ∈ E,

X =
1

xT x
xxT , x ∈ {0, 1}n

After eliminating x it is easy to see

α(G) = max〈J,X〉 such that xij = 0 ∀ij ∈ E,

tr(X) = 1, X ∈ PSD, rank(X) = 1.
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Proof:

• X = vvT for some vector v.
• xij = 0 on edges ij implies that support of v is nonzero
only on some stable set S of G.
• Looking at nonzero part vS of v, the maximization of
(vT e)2 forces vS to be parallel to e.
• Therefore X is multiple of vvT where v is characteristic
vector of some stable set.
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Proof:

• X = vvT for some vector v.
• xij = 0 on edges ij implies that support of v is nonzero
only on some stable set S of G.
• Looking at nonzero part vS of v, the maximization of
(vT e)2 forces vS to be parallel to e.
• Therefore X is multiple of vvT where v is characteristic
vector of some stable set.

Leaving out the rank condition on X, we get the Theta
number of Lovasz (1979):

ϑ(G) := max{〈J,X〉 : X � 0, tr(X) = 1, xij = 0 (ij) ∈ E}

This SDP has m + 1 equations, if |E| = m.
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More SDP modeling: Graph Coloring

Adjacency matrix A of a graph (left), associated Coloring
Matrix (right). The graph can be colored with 5 colors.

• M is coloring matrix if ∃P ∈ Π such that P T MP is direct
sum of all-ones blocks and mij = 0 if [ij] ∈ E(G).
• Number of colors = number of all-ones blocks = rank of M .
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Chromatic number

• M is coloring matrix if ∃P ∈ Π such that P T MP is direct
sum of all-ones blocks and mij = 0 if [ij] ∈ E(G).
• Number of colors = number of all-ones blocks = rank of M .

Therefore chromatic number χ(G) of graph G can be
defined as follows:

χ(G) = min{rank(M) : M is coloring matrix of G}.

We need a ’better’ description of coloring matrices.

F. Rendl, Bertinoro, May 2008 – p.23/31



More on Coloring Matrices

Lemma: M is coloring matrix if and only if

M = MT , mij ∈ {0, 1},mij = 0 (ij) ∈ E,

(tM − J � 0 ⇔ t ≥ rank(M)).

Proof:
⇒: Nonzero principal minor of tM − J has form tIs − Js and
s ≤ rank(M). Hence tM − J � 0 iff t ≥ rank(M).

⇐: mii = 1 (so each vertex in one color class).

mij = mjk = 1 implies mik = 1 because









1 1 0

1 1 1

0 1 1









6� 0.

Therefore M is direct sum of all-ones blocks.
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Chromatic number

Hence

χ(G) = min{rank(M) : M is coloring matrix of G} =

min{t : M = MT ,mij ∈ {0, 1},mij = 0∀ij ∈ E(G), tM−J � 0},

using the previous lemma.
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Chromatic number

Hence

χ(G) = min{rank(M) : M is coloring matrix of G} =

min{t : M = MT ,mij ∈ {0, 1},mij = 0∀ij ∈ E(G), tM−J � 0},

using the previous lemma.
Leaving out mij ∈ {0, 1} gives SDP lower bound:

χ(G) ≥ min{t : Y −J � 0, yii = t ∀i, yij = 0 ij ∈ E(G)} = ϑ(G).

This gives the second inequality in the Lovasz sandwich
theorem, Lovasz (1979):
ω(G) ≤ ϑ(G) ≤ χ(G).
The first inequality can be derived in a similar way, using
the dual SDP.
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Quadratic Assignment Problem (QAP)

(QAP) min〈AXB + C,X〉 such that X is permutation matrix

Using x = vec(X), x ◦ x = x we get

〈AXB + C,X〉 = 〈B ⊗ A + Diag(vec(C)), xxT 〉

Now linearize Y = xxT to get SDP or COP relaxations.

A technical problem:
How translate permutation properties from x to Y ?

X = (x1, . . . , xn), Y =







Y 11 . . . Y 1n

...
...

Y n1 . . . Y nn






, Y ij = xix

T
j
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QAP (2)

∑

i

Y ii =
∑

i

xix
T
i = I, tr(Y ij) = xT

i xj = δij

〈J, Y 〉 = (eT x)(xT e) = n2

X is orthogonal, sums of all elements =n.

F := {Y � 0,
∑

i

Y ii = I, tr(Y ij) = δij , 〈J, Y 〉 = n2}

The last condition can also be written out for each block Y ij

as
〈J, Y ij〉 = 1.

Note that Y is n2 × n2.
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SDP relaxation of QAP

L = B ⊗ A + Diag(vec(C)), Y as before.

min〈L, Y 〉 : Y ∈ F

Further constraints possible:

Y ≥ 0 O(n4) sign constraints !!

Yij,ik = Yik,jk = 0 for all i, j 6= k O(n3) equations

This leads to SDP which could only be solved very recently
using refined nonlinear techniques, see Sun, Toh, Zhang (
working paper, 2008).
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Tightening with Cutting Planes

Recall SDP relaxation of Max-Cut:
max〈L,X〉 : diag(X) = e, X � 0.
Can be further tightened by Combinatorial Cutting Planes:

A simple observation:
Barahona, Mahjoub (1986): Cut Polytope, Deza, Laurent
(1997): Hypermetric Inequalities

x ∈ {−1, 1}n, f = (1, 1, 1, 0, . . . , 0)T ⇒ |fT x| ≥ 1.

Results in xT f fT x = 〈(xxT ), (ffT )〉 = 〈X,ffT〉 ≥ 1.

Can be applied to any triangle i < j < k.
Nonzeros of f can also be -1.
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Max-Cut and Triangles

There are 4
(

n
3

)

such triangle inequality constraints, which
we collect in B(X) ≤ b.

SDP relaxation of Max-Cut with triangles:

max〈L,X〉 : diag(X) = e, B(X) ≤ b, X � 0

Direct application of standard methods not possible for
n ≈ 100, because there are about 2

3n3 inequalities.

Can also be applied to other partition problems, and to
relaxatons for stable sets and coloring.

This gives tighter relaxation, but the SDP becomes much
more difficult to solve.
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